Adaptive TTL Caches for Content Delivery

SANJAY SHAKKOTTAI

The University of Texas At Austin

WITH SOUMYA BASU, ADITYA SUNDARARAJAN, JAVAD GHADERI, AND RAMESH SITARAMAN

Cache Design in Content Delivery

- Millions of objects of multiple types, each type has own requirement
- **25 m** objects of total size **25 TB** and **504 m** requests in a 9 day trace from one Akamai server (several thousand servers worldwide)
- Correlated arrivals with complex inter-arrival distribution
- Significant fraction of rare arrivals, e.g. objects with a few requests
- Guarantee hit rate for QoS and decrease cache size for reducing cost

Time-to-Live (TTL) Cache

- Popular caching scheme with good theoretical guarantees
- Algorithm: Fixed TTL value *θ* for all objects
 - Cache miss: Object not in cache
 - Fetch object from server
 - Cache object with TTL θ
 - Cache hit: Object present in cache
 - Reset TTL of the object to θ
 - On timer expiry: Evict object from cache

Deficiencies in Existing Approach

- A popular approach in designing cache is model based
 - Assume an underlying content request model
 - Tractable approximations, e.g. Che's formula/approximation
 - Design cache using analytical expression of hit rate and size

```
Hit rate = 1 - \exp(-\lambda_m T_c)
Cache size = \sum_m (1 - exp(-\lambda_m T_c))
```

- Approximate request model lead to error in analytical expression
- Tractable approximations difficult for complex caching models

Deficiencies in Existing Approach: Fixed TTL

- Compute TTL value for hit rate and estimate size for the TTL value
- Performance of TTL cache with approx. on a 9 day long Akamai trace

Dynamic TTL Adaptation

- Goal: Achieve target hit rate h^*
- Adaptation of TTL: TTL $\uparrow \Rightarrow$ Hit rate \uparrow , TTL $\downarrow \Rightarrow$ Hit rate \downarrow
 - Cache hit on *l*th arrival

• Decrease TTL:
$$\theta(l) = \left(\theta(l-1) - \frac{1}{l}(1-h^*)\right)^+$$

- Cache miss on *l*th arrival
 - Increase TTL : $\theta(l) = \theta(l-1) + \frac{1}{l}(h^*)$

Converges to TTL $heta^*$ providing hit rate h^* for stationary traffic

Drawback: Transient Arrivals

- Rare objects have negligible contribution to hit rate
- 70% of all objects, 10% of the traffic, are requested only once
- Size occupied by rare objects = (TTL value) × (Arrival rate)
- Significant number of rare objects leads to large cache wastage

Which objects are rare? How to filter rare objects?

Filtering Rare objects: Shadow Cache

- Separate shadow cache along with main TTL cache Deep cache
- On a new arrival cache object **label** in shadow cache with TTL θ
- Upon a hit in shadow cache object enters deep cache with TTL heta
- Similar to LRU-2Q or Bloom filter + LRU

Result: Dynamic TTL with $\theta(l)$ projected on [0,L] converges to TTL θ^* in the presence of rare object traffic if h^* is feasible (w.r.t. L).

Infrequent Bursty Arrivals

- Filtering differentiates rare and popular objects to reduce cache size
- Problem: Infrequent bursty arrivals suffer from filtering

Example: Bursty requests with typically 4 arrivals,

and bursts separated in time beyond TTL.

Can we capture multi-time-scale dynamics?

Filtering TTL Cache

• A filtering TTL cache has three parts:

- Deep Cache (DC), Shadow Cache (SdC), and Shallow Cache (SC)
- Deep Cache captures the popular objects with TTL θ
- Shadow Cache filters out rare objects with TTL θ
- Shallow Cache captures infrequent burstiness with TTL $\psi < heta$
- Joint adaptation of ψ and θ to meet hit rate and size targets

Filtering TTL Cache (f-TTL): Deep Cache Hit

Cache Hit in Deep Cache

Filtering TTL Cache (f-TTL): Cache Miss

Cache Miss

Filtering TTL Cache (f-TTL): Shallow Cache Hit

Shallow Cache Hit

Filtering TTL Cache (f-TTL): Shadow Cache Hit

Shadow Cache Hit

Filtering TTL Cache (f-TTL):Objectives

- Achieve target hit rate $oldsymbol{h}^*$
- Achieve size λs^* (λ is arrival rate)
- **s**^{*} is average (over time and objects) occupancy duration of a request
- Occupancy duration is duration from arrival to eviction or TTL reset

Filtering TTL Cache (f-TTL): Adaptation

- The adaptation of θ is the same as the dynamic TTL cache
 - Increase θ on cache miss and shadow cache hit
 - Decrease θ on shallow or deep cache hit
- The adaptation of ψ is to meet s^* (size target == occupancy duration)
 - Estimate the occupancy duration $s_{est}(l)$
 - Increase ψ if $s^* > s_{est}(l)$ and decrease otherwise

F-TTL Cache: Time Scale Separation

- Faster adaptation of θ compared to ψ Time scale separation
 - Deep Cache Adaptation: In faster time scale, ψ (shallow cache) is quasi-static while θ adjusts to attain hit rate
 - Shallow Cache Adaptation: In slower time scale, ψ adapts to attain size

•
$$\theta(l) = \left(\theta(l-1) - \frac{1}{l^{\alpha}}(Y(l) - h^*)\right)^+$$

 $\alpha \in (0.5,1)$ and Y(l) = 1 if Deep cache/ Shallow cache hit, 0 o/w

•
$$\psi(l) = \min\{\theta(l), \left(\psi(l-1) + \frac{1}{l}(s^* - s_{est}(l))\right)^+\}$$

Filtering TTL Cache (f-TTL): Estimating *s*_{est}

- At adaptation instance, checking the size is misleading
- Remaining TTL timer value for request object $\phi(l)$
- Estimating the occupancy duration
 - Deep/ Shallow cache hit: $s_{est}(l) = \theta(l-1) \phi(l)$
 - Shadow cache hit: $s_{est}(l) = \theta(l-1)$
 - Cache miss: $s_{est}(l) = \psi(l-1)$

- Size 3 at the first arrival instance
- Size changes between two arrival instances

Truncating Parameters – Towards Actor-Critic

- TTL value θ may become unbounded in presence of rare objects
 - α % of the traffic from rare objects $\Rightarrow h^* > (100 \alpha)$ % infeasible
 - We need to project $\theta(l)$ on [0,L] with large but finite L

Projection for robustness against rare objects

- Problem: Suppose the operator sets attainable h^* but sets s^* too small
- We can argue that $(\theta(l),\psi(l)) \to (L,0),$ resulting in an achieved hit rate of $h < h^*$

Approach: Fictitious dynamics through an actor-critic algorithm

An Actor-Critic Algorithm

- Approach: Separate observation and action Actor-critic algorithm
- Critic parameters ϑ and δ record hit rate and size rate, resp.
- Actor parameters θ and ψ are used in the f-TTL algorithm

• Actors are functions of critics: $\theta = L\vartheta$ and $\psi = \Gamma_{\epsilon}(\vartheta, \delta)$ • Saturation function $\Gamma_{\epsilon}(\vartheta, \delta) = \begin{cases} \delta, & \text{if } \vartheta \leq 1 - 1.5\epsilon \\ \vartheta, & \text{if } \vartheta, \geq 1 - 0.5\epsilon \\ \text{interpolation, o/w} \end{cases}$

 $\Gamma_{\epsilon}(artheta, \delta_0)$ δ_0 ϵ 0

• Time scale separation in ϑ and δ adaptation to ensure convergence

Details: Actor Critic Adaptation

• Cache hit: Let the object be of type t , with size w and at the time of request its TTL timer be $\phi>0$

•
$$\vartheta(l) = \max\left(0, \vartheta(l-1) - \frac{1}{l^{\alpha}}(1-h^*)\right), \alpha \in (0.5, 1)$$

•
$$\delta(l) = \min\left(1, \max\left(0, \vartheta_t(l-1) + \frac{1}{l}(s^* - \theta(l-1) + \phi)\right)\right)$$

• Shadow hit or miss: Let the object be of type t, with size w • $\vartheta(l) = \min(1, \vartheta(l-1) + \frac{1}{l\alpha}h^*)$

•
$$\delta(l) = \min\left(1, \max\left(0, \vartheta(l-1) + \frac{1}{l}\left(s^* - \psi(l-1)\right)\right)\right)$$

Filtering TTL Cache (f-TTL): Guarantees

- Bursty arrivals, and rare objects following a 'Rarity condition' (objects with asymptotic zero hit rate) present
- Two-timescale stochastic approximation based proof technique (using methods in Borkar 97; conditions from Kushner-Clark, Kushner-Yin)

Filtering TTL with actor-critic adaptation converges to $(m{artheta}^*,m{\delta}^*)$ a.a.s.

- •If h^* feasible with threshold L then h^* is achieved
- •Either achieves size λs where $s \leq s^*$
- •Or collapses to a pure shadow cache mode, i.e. $oldsymbol{\psi}=oldsymbol{0}$
- Generalize to multiple types with different h^* and s^*
- Generalize to different object sizes with modified adaptation

Performance on Akamai Traces

- Modified Algorithm with constant step size adaptation
- 9 day trace with 504m requests from 25m distinct objects
- Average error for hit rate targets 0.4, 0.5, 0.6, 0.7, and 0.8 : < 1.3%

Performance on Akamai Traces

- Variable sized version of the d-TTL and f-TTL Algorithms
- Size rate target = 50% of d-TTL : Size rate achieved = 49% of d-TTL

Fig 3: Hit rate vs Average Cache Size curve

Thank You