Adaptive TTL Caches for
Content Delivery

SANJAY SHAKKOTTAI
The University of Texas At Austin

WITH SOUMYA BASU, ADITYA SUNDARARAJAN, JAVAD GHADERI, AND RAMESH SITARAMAN

Cache Design in Content Delivery

* Millions of objects of multiple types, each type has own requirement

* 25 m objects of total size 25 TB and 504 m requests in a 9 day trace
from one Akamai server (several thousand servers worldwide)

* Correlated arrivals with complex inter-arrival distribution
e Significant fraction of rare arrivals, e.g. objects with a few requests

* Guarantee hit rate for QoS and decrease cache size for reducing cost

Time-to-Live (TTL) Cache

e Popular caching scheme with good theoretical guarantees

* Algorithm: Fixed TTL value 0 for all objects

e Cache miss: Object not in cache

* Fetch object from server [[[.,

Cache Cache time

e Cache object with TTL 6 Hit Eviction Miss
TTL Cache Dynamics

e Cache hit: Object present in cache

 Reset TTL of the objectto 6

* On timer expiry: Evict object from cache

Deficiencies in Existing Approach

* A popular approach in designing cache is model based

* Assume an underlying content request model
 Tractable approximations, e.g. Che’s formula/approximation
* Design cache using analytical expression of hit rate and size

Hit rate = 1 — exp(—1,,T,)
Cache size = Zm(l — exp(—/lmTc))

* Approximate request model lead to error in analytical expression

* Tractable approximations difficult for complex caching models

Deficiencies in Existing Approach: Fixed TTL

 Compute TTL value for hit rate and estimate size for the TTL value
* Performance of TTL cache with approx. on a 9 day long Akamai trace
98

X
N °
o 97
c
©
o
L 96 °
o]
Rl o
© °
Q 95
‘»
Q
S 94 T
©
@)

93

0 10 20 30 40 50 60

Hit rate discrepancy, %

Dynamic TTL Adaptation —— —

Cache | Cache time
Hit Eviction Miss
* Goal: Achieve target hit rate h* TTL Cache Dynamics

* Adaptation of TTL: TTL T= Hitrate T, TTL l= Hit rate |
e Cache hit on [*! arrival

+
* Decrease TTL: 6(l) = (H(I —1) — % (1-— h*))
e Cache miss on [™" arrival
* Increase TTL: 6(1) =6(l —1) +%(h*)

Converges to TTL 8" providing hit rate h™ for stationary traffic

Drawback: Transient Arrivals

e Rare objects have negligible contribution to hit rate
* 70% of all objects, 10% of the traffic, are requested only once
* Size occupied by rare objects = (TTL value) x (Arrival rate)

* Significant number of rare objects leads to large cache wastage

Which objects are rare?
How to filter rare objects?

Filtering Rare objects: Shadow Cache

e Separate shadow cache along with main TTL cache — Deep cache
* On a new arrival cache object label in shadow cache with TTL 6
* Upon a hit in shadow cache object enters deep cache with TTL 8

e Similar to LRU-2Q or Bloom filter + LRU

- 0
Deep Cache | | Object

Result: Dynamic TTL with @(1) projected chadow T

on [O,L] converges to TTL 67 in the| |cache . [[e time’
presence of rare object traffic if h” is Miss Miss
f .bl (t L) Fig. TTL Cache with Filtering
easible (w.r.t. L).

Infrequent Bursty Arrivals

* Filtering differentiates rare and popular objects to reduce cache size

* Problem: Infrequent bursty arrivals suffer from filtering

Example: Bursty requests with typically 4 arrivals, 0

and bursts separated in time beyond TTL. IH I

Can we capture multi-time-scale dynamics?

.
. . Deep Cache I_
Filterin g TTL Cac he — S -
|
Label *
Shallow Cache 4 Label evicted
|
o gl
A filtering TTL cache has three parts: Object evicted

* Deep Cache (DC), Shadow Cache (SdC), and Shallow Cache (SC)

Deep Cache captures the popular objects with TTL 8

Shadow Cache filters out rare objects with TTL 6

Shallow Cache captures infrequent burstiness with TTLY < 0

Joint adaptation of ¥ and 0 to meet hit rate and size targets

Filtering TTL Cache (f-TTL): Deep Cache Hit

0 . 0

Deep Cache

Obj

Object enters
Deep Cache

(New request) time

* Object presentin DC
* TTLis reset

Cache Hit in Deep Cache

Filtering TTL Cache (f-TTL): Cache Miss

0*
Shadow Cache
Label enters {

Shadow Cach .

Shallow Cache - ‘
1 time
Object enters |
Shallow Cache * Object not present

* Label not present
* Fetch from server

Cache Miss

Filtering TTL Cache (f-TTL): Shallow Cache Hit

e*
Deep Cache
. Object enters
Shadow Cache . 9 » Deep Cache
" Label evicted time

Shallow Cache

time

m * Object present in SC
, . * Label presentin SdC
Object evicted Move object from SC to DC

Shallow Cache Hit

Filtering TTL Cache (f-TTL): Shadow Cache Hit

7]
Deep Cache -)
) ey Object enters
Shadow Cache - 6 Deep Cache
T | >
¢* time

Shallow Cache > Label evicted

1 time

* Object not present

* Label presentin SdC
Fetch from server

* Not counted as cache hit

Obj

Object evicted

Shadow Cache Hit

Filtering TTL Cache (f-TTL):Objectives

* Achieve target hit rate h”
* Achieve size As™ (A is arrival rate)
* S™is average (over time and objects) occupancy duration of a request

* Occupancy duration is duration from arrival to eviction or TTL reset

Occupancy duration=60 — ¢ |<—> I
\ Cache| ¢ ' Cache time

Hit Eviction Miss \

Occupancy duration=6

Filtering TTL Cache (f-TTL): Adaptation

* The adaptation of 8 is the same as the dynamic TTL cache

* |ncrease 8 on cache miss and shadow cache hit
* Decrease 0 on shallow or deep cache hit

* The adaptation of Y is to meet s™ (size target == occupancy duration)

 Estimate the occupancy duration s, (1)
* Increase Y if s* > s,4+(l) and decrease otherwise

F-TTL Cache: Time Scale Separation
* Faster adaptation of 8 compared to i — Time scale separation

* Deep Cache Adaptation: In faster time scale, Y (shallow cache) is
quasi-static while 8 adjusts to attain hit rate

* Shallow Cache Adaptation: In slower time scale, 1 adapts to attain size

+
co0) = (00— D - £ (YD - b))
a € (0.5,1) and Y (1) = 1 if Deep cache/ Shallow cache hit, 0 o/w

<P = minfO, (YU~ 1) +1 (5" = 5o D)))

Filtering TTL Cache (f-TTL): Estimating Sy

e At adaptation instance, checking the size is misleading jl_ X

* Remaining TTL timer value for request object ¢ (1)

e Estimating the occupancy duration
* Deep/ Shallow cache hit: s, (1) = 0(— 1) — ¢ (1)
* Shadow cache hit: s,.;(1) = 6(l — 1)
e Cache miss: s (1) =y (l — 1)

e Size 3 at the first

arrival instance

* Size changes between

two arrival instances

Truncating Parameters — Towards Actor-Critic

 TTL value 8 may become unbounded in presence of rare objects
* a% of the traffic from rare objects = h* > (100 — a)% infeasible
* We need to project 8([) on [0,L] with large but finite L

Projection for robustness against rare objects

* Problem: Suppose the operator sets attainable h™ but sets s* too small

* We can argue that (6(1), Y (1)) — (L,0), resulting in an achieved hit rate
ofh < h”

Approach: Fictitious dynamics through an actor-critic algorithm

An Actor-Critic Algorithm

* Approach: Separate observation and action — Actor-critic algorithm
* Critic parameters 9 and 0 record hit rate and size rate, resp.
* Actor parameters 8 and Y are used in the f-TTL algorithm

* Actors are functions of critics: 8 = LY and iy = LT (9, §) f
(5, if9<1-—15¢ e |
e Saturation functionI[.(9,6) =4 9, if ¥,=1—0.5¢ 8o
\interpolation, o/w 0 1
9
* Time scale separation in 9 and 0 adaptation to ensure convergence

Details: Actor Critic Adaptation

* Cache hit: Let the object be of type t , with size w and at the time of
request its TTL timerbe ¢ > 0

« 9(1)= max (0,19(1 -~ - - h*)) @ € (0.51)

* 6(1)= min (1, max (O, 9. (1 —1) + % (s*—6(—1) + qb)))
* Shadow hit or miss: Let the object be of type t, with size w
» 9(D)=min (1,9(— 1) + - h*)

+ 8(1)=min (1, max (0,19(1 — 1)+ (5" -y - 1))))

Filtering TTL Cache (f-TTL): Guarantees

* Bursty arrivals, and rare objects following a ‘Rarity condition’ (objects with
asymptotic zero hit rate) present

* Two-timescale stochastic approximation based proof technique (using
methods in Borkar 97; conditions from Kushner-Clark, Kushner-Yin)

Filtering TTL with actor-critic adaptation converges to (9%, ") a.a.s.
If h* feasible with threshold L then h™ is achieved
Either achieves size As where s < s
*Or collapses to a pure shadow cache mode, i.e.) = 0

* Generalize to multiple types with different h* and s*
* Generalize to different object sizes with modified adaptation

Performance on Akamai Traces

* Modified Algorithm with constant step size adaptation
* 9 day trace with 504m requests from 25m distinct objects
* Average error for hit rate targets 0.4, 0.5, 0.6, 0.7, and 0.8 : < 1.3%

80 80

o))
o

)
i
;?
%
)

Object hit rate, %
B
(=]

FFFFFF

Object hit rate, %
s
o

——2-hour average —2-hour average

20 20
----Cumulative average ----Cumulative average
0 0
12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00

Time Time

Fig 1: d-TTL Convergence Plot Fig 2: f-TTL Convergence Plot

Performance on Akamai Traces

* Variable sized version of the d-TTL and f-TTL Algorithms
e Size rate target = 50% of d-TTL : Size rate achieved =49% of d-TTL

1000
—d-TTL
i]
= - T
= 100 f-TTL
=y]
]
i .-
w 10 -
i -~
u "_
> -
E 0.1
=
0.01
0 20 40 60 80 100

Average object hit rate, %

Fig 3: Hit rate vs Average Cache Size curve

Thank You

