
Adaptive	TTL	Caches	for	
Content	Delivery

SANJAY	SHAKKOTTAI
The	University	of	Texas	At	Austin

WITH 	SOUMYA 	BASU, 	AD ITYA 	 SUNDARARA JAN , 	 JAVAD GHADER I , 	AND 	RAMESH 	S I TARAMAN

Cache	Design	in	Content	Delivery

• Millions	of	objects	of	multiple	types,	each	type	has	own	requirement
• 25	m objects	of	total	size	25	TB	and	504	m requests	in	a	9	day	trace	
from	one	Akamai	server	(several	thousand	servers	worldwide)
• Correlated	arrivals	with	complex	inter-arrival	distribution	
• Significant	fraction	of	rare	arrivals,	e.g.	objects	with	a	few	requests		
• Guarantee	hit	rate	for	QoS and	decrease	cache	size	for	reducing	cost

Time-to-Live	(TTL)	Cache
• Popular	caching	scheme	with	good	theoretical	guarantees

• Algorithm:	Fixed	TTL	value	𝜽 for	all	objects

• Cache	miss:	Object	not	in	cache		

• Fetch	object	from	server		

• Cache	object	with	TTL	𝜃

• Cache	hit:	Object	present	in	cache

• Reset	TTL	of	the	object	to	𝜃

• On	timer	expiry:	Evict	object	from	cache

Cache
Miss

Cache
Hit Eviction

𝜃𝜃 𝜃

𝑡𝑖𝑚𝑒

TTL	Cache	Dynamics

Deficiencies	in	Existing	Approach
• A	popular	approach	in	designing	cache	is	model	based
• Assume	an	underlying	content	request	model
• Tractable	approximations,	e.g.	Che’s formula/approximation
• Design	cache	using	analytical	expression	of	hit	rate	and	size

• Approximate	request	model	lead	to	error	in	analytical	expression
• Tractable	approximations	difficult	for	complex	caching	models				

𝑯𝒊𝒕	𝒓𝒂𝒕𝒆 = 𝟏 − 𝐞𝐱𝐩 −𝝀𝒎𝑻𝒄
C𝒂𝒄𝒉𝒆	𝒔𝒊𝒛𝒆	 = ∑ (𝟏 − 𝒆𝒙𝒑 −𝝀𝒎𝑻𝒄)�

𝒎

Deficiencies	in	Existing	Approach:	Fixed	TTL

93

94

95

96

97

98

0 10 20 30 40 50 60

Ca
ch
e0
siz

e0d
isc

re
pa

nc
y,0
%

Hit0rate0discrepancy,0%

• Compute	TTL	value	for	hit	rate	and	estimate	size	for	the	TTL	value		
• Performance	of	TTL	cache	with	approx.	on	a	9	day	long	Akamai	trace

Dynamic	TTL	Adaptation

• Goal:	Achieve	target	hit	rate	ℎ∗

• Adaptation	of	TTL:	TTL	↑⇒ Hit	rate	↑, TTL	↓⇒ Hit	rate	↓
• Cache	hit	on	𝑙GH arrival	

• Decrease	TTL	:	𝜃 𝑙 = 𝜃 𝑙 − 1 − J
K
1 − ℎ∗

L

• Cache	miss	on	𝑙GH arrival	

• Increase	TTL	:	𝜃 𝑙 = 𝜃 𝑙 − 1 + J
K
(ℎ∗)

Converges	to	TTL	𝜽∗	providing	hit	rate	𝒉∗ for	stationary	traffic

Cache
Miss

Cache
Hit Eviction

𝜃𝜃 𝜃

𝑡𝑖𝑚𝑒

TTL	Cache	Dynamics

Drawback:	Transient	Arrivals

• Rare	objects	have	negligible	contribution	to	hit	rate

• 70% of	all	objects,	10% of	the	traffic,	are	requested	only	once	

• Size	occupied	by	rare	objects	=	(TTL	value)	⨉ (Arrival	rate)

• Significant	number	of	rare	objects	leads	to	large	cache	wastage

Which	objects	are	rare?	
How	to	filter	rare	objects?			

Filtering	Rare	objects:	Shadow	Cache
• Separate	shadow	cache	along	with	main	TTL	cache	– Deep	cache	

• On	a	new	arrival	cache	object	label in	shadow	cache	with	TTL	𝜃

• Upon	a	hit	in	shadow	cache	object	enters	deep	cache	with	TTL	𝜃

• Similar	to	LRU-2Q	or	Bloom	filter	+	LRU	

Fig.	TTL	Cache	with	Filtering

Cache
Miss

Cache
Miss

𝜃

𝑡𝑖𝑚𝑒

𝜃

Shadow	
Cache

Label

ObjectDeep	Cache

Infrequent	Bursty	Arrivals

• Filtering	differentiates	rare	and	popular	objects	to	reduce	cache	size

• Problem:	Infrequent	bursty	arrivals	suffer	from	filtering	

𝜃
𝜓

time

Can	we	capture	multi-time-scale	dynamics?			

Example:	Bursty	requests	with	typically	4	arrivals,	

and	bursts	separated	in	time	beyond	TTL.

Filtering	TTL	Cache

• A	filtering	TTL	cache	has	three	parts:	

• Deep	Cache	(DC),	Shadow	Cache	(SdC),	and	Shallow	Cache	(SC)

• Deep	Cache	captures	the	popular	objects	with	TTL	𝜃

• Shadow	Cache	filters	out	rare	objects	with	TTL	𝜃

• Shallow	Cache	captures	infrequent	burstiness with	TTL	𝝍 < 𝜽

• Joint	adaptation	of	𝝍 and	𝜽 to	meet	hit	rate	and	size	targets	

Obj

Shallow	Cache
time

!∗

Shadow	Cache

time

#∗

Label

Deep	Cache
Obj Object	enters	

Deep	Cache

Label

Obj

Object	evicted

Label	evicted

#∗

Filtering	TTL	Cache	(f-TTL):	Deep	Cache	Hit

Obj

Deep	Cache

time

𝜽∗

Object	enters	
Deep	Cache

• Object	present	in	DC
• TTL	is	reset

Cache	Hit	in	Deep	Cache

𝜽∗

(New	request)

Filtering	TTL	Cache	(f-TTL):	Cache	Miss

Obj

Shallow	Cache

time

𝝍∗

Object	enters	
Shallow	Cache • Object	not	present

• Label	not	present
• Fetch	from	server

Cache	Miss

Shadow	Cache

time

𝜽∗

Label	enters	
Shadow	Cache Label

Filtering	TTL	Cache	(f-TTL):	Shallow	Cache	Hit

Obj

Shallow	Cache

time

𝝍∗

• Object	present	in	SC
• Label	present	in	SdC
• Move	object	from	SC	to	DC

Shallow	Cache	Hit

Shadow	Cache

time

𝜽∗

Label

Deep	Cache

Obj Object	enters	
Deep	Cache

Label

Obj

Object	evicted

Label	evicted

𝜽∗

Filtering	TTL	Cache	(f-TTL):	Shadow	Cache	Hit

Shadow	Cache	Hit

Obj

Shallow	Cache

time

𝝍∗

• Object	not	present
• Label	present	in	SdC
• **Fetch	from	server**
• Not	counted	as	cache	hit

Shadow	Cache

time

𝜽∗

Label

Deep	Cache

Obj Object	enters	
Deep	Cache

Label

Obj

Object	evicted

Label	evicted

𝜽∗

Filtering	TTL	Cache	(f-TTL):Objectives

• Achieve	target	hit	rate	𝒉∗	
• Achieve	size	 𝜆𝒔∗ (𝜆 is	arrival	rate)	
• 𝒔∗ is	average	(over	time	and	objects)	occupancy	duration	of	a	request

• Occupancy	duration	is	duration	from	arrival	to	eviction	or	TTL	reset

Cache
Miss

Cache
Hit Eviction

𝜃𝜃 𝜃

𝑡𝑖𝑚𝑒𝜙

Occupancy	duration=	𝜃

Occupancy	duration=	𝜃 − 𝜙

Filtering	TTL	Cache	(f-TTL):	Adaptation
• The	adaptation	of	𝜃 is	the	same	as	the	dynamic	TTL	cache
• Increase	𝜃 on	cache	miss	and	shadow	cache	hit	
• Decrease	𝜃 on	shallow	or	deep	cache	hit

• The	adaptation	of	𝜓 is	to	meet	𝑠∗ (size	target	==	occupancy	duration)
• Estimate the	occupancy	duration	𝑠TUV 𝑙
• Increase	𝜓 if	𝑠∗ > 𝑠TUV(𝑙) and	decrease	otherwise

F-TTL	Cache:	Time	Scale	Separation
• Faster	adaptation	of	𝜃 compared	to	𝜓 − Time	scale	separation	
• Deep	Cache	Adaptation:	In	faster	time	scale,	𝜓 (shallow	cache)	is	

quasi-static	while	𝜃 adjusts	to	attain	hit	rate	
• Shallow	Cache	Adaptation:	In	slower	time	scale,	𝜓 adapts	to	attain	size	

• 𝜃 𝑙 = 𝜃 𝑙 − 1 − J
KX

𝑌(𝑙) − ℎ∗
L

𝛼 ∈ (0.5,1) and	𝑌(𝑙) =	1	if	Deep	cache/	Shallow	cache	hit,	0	o/w

• 𝜓 𝑙 = min{𝜃 𝑙 , 𝜓 𝑙 − 1 + J
K
𝑠∗ − 𝑠TUV(𝑙)

L
}

Filtering	TTL	Cache	(f-TTL):	Estimating	𝑠TUV

• At	adaptation	instance,	checking	the	size	is	misleading

• Remaining	TTL	timer	value	for	request	object	𝜙(𝑙)

• Estimating	the	occupancy	duration	

• Deep/	Shallow	cache	hit:	𝑠TUV 𝑙 = 𝜃 𝑙 − 1 − 𝜙(𝑙)

• Shadow	cache	hit:	𝑠TUV 𝑙 = 𝜃 𝑙 − 1

• Cache	miss:	𝑠TUV 𝑙 = 𝜓 𝑙 − 1 	

• Size	3	at	the	first	
arrival	instance

• Size	changes	between	
two	arrival	instances	

Truncating	Parameters	– Towards	Actor-Critic
• TTL	value	𝜃 may	become	unbounded	in	presence	of	rare	objects
• 𝛼%	of	the	traffic	from	rare	objects		⟹ℎ∗ > (100 − 𝛼)%	infeasible
• We	need	to	project	𝜃(𝑙) on	[0,L]	with	large	but	finite	L

• Problem:	Suppose	the	operator	sets	attainable	ℎ∗ but	sets	𝑠∗ too	small
• We	can	argue	that	(𝜃 𝑙 , 𝜓 𝑙)	→ (𝐿,0),	resulting	in	an	achieved	hit	rate	
of	ℎ < ℎ∗

Projection	for	robustness	against	rare	objects

Approach:	Fictitious	dynamics	through	an	actor-critic	algorithm

An	Actor-Critic	Algorithm

• Approach: Separate	observation	and	action – Actor-critic	algorithm
• Critic	parameters	𝜗 and	𝛿	record	hit	rate	and	size	rate,	resp.
• Actor	parameters	𝜃 and 𝜓	 are	used	in	the	f-TTL	algorithm
• Actors	are	functions	of	critics:	𝜃 = 𝐿𝜗 and	𝜓 = L	Γm(𝜗, 𝛿)

• Saturation	function	Γm 𝜗, 𝛿 = n
𝛿, 		𝑖𝑓	𝜗 ≤ 1 − 1.5𝜖
𝜗, 			𝑖𝑓	𝜗, ≥ 1 − 0.5𝜖
𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛, 		𝑜/𝑤

• Time	scale	separation	in	𝜗 and	𝛿	 adaptation	to	ensure	convergence
𝝑

𝜞 𝝐
𝝑,
𝜹 𝟎

𝛿�

𝜖0 1

Details:	Actor	Critic	Adaptation

• Cache	hit:	Let	the	object	be	of	type	𝑡	,	with	size	𝑤 and	at	the	time	of	
request	its	TTL	timer	be	𝜙 > 0
• 𝜗(𝑙)=	max 0, 𝜗 𝑙 − 1 − J

KX
1 − ℎ∗ , 𝛼 ∈ (0.5,1)

• 𝛿(𝑙)=	min 1,max 0, 𝜗V 𝑙 − 1 + J
K
𝑠∗ − 𝜃 𝑙 − 1 + 𝜙

• Shadow	hit	or	miss:	Let	the	object	be	of	type	𝑡	,	with	size	𝑤
• 𝜗(𝑙)=	min 1, 𝜗 𝑙 − 1 + J

KX
ℎ∗

• 𝛿(𝑙)=	min 1,max 0, 𝜗 𝑙 − 1 + J
K
𝑠∗ − 𝜓 𝑙 − 1

Filtering	TTL	Cache	(f-TTL):	Guarantees

• Bursty	arrivals,	and	rare	objects	following	a	‘Rarity	condition’	(objects	with	
asymptotic	zero	hit	rate)	present	
• Two-timescale	stochastic	approximation	based	proof	technique	(using	
methods	in	Borkar 97;	conditions	from	Kushner-Clark,	Kushner-Yin)

• Generalize	to	multiple	types	with	different	ℎ∗ and	𝑠∗

• Generalize	to	different	object	sizes	with	modified	adaptation

Filtering	TTL	with	actor-critic	adaptation	converges	to	(𝝑∗, 𝜹∗) a.a.s.
•If	𝒉∗ feasible	with	threshold	𝑳 then	𝒉∗ is	achieved	
•Either	achieves	size	𝝀𝒔 where	𝒔 ≤ 𝒔∗
•Or	collapses	to	a	pure	shadow	cache	mode,	i.e.	𝝍 = 𝟎

Performance	on	Akamai	Traces
• Modified	Algorithm	with	constant	step	size	adaptation
• 9	day	trace	with	504m	requests	from	25m	distinct	objects	
• Average	error	for	hit	rate	targets	0.4,	0.5,	0.6,	0.7,	and	0.8	:	<	1.3%

Fig	1:	d-TTL	Convergence	Plot Fig	2:	f-TTL	Convergence	Plot

Performance	on	Akamai	Traces
• Variable	sized	version	of	the	d-TTL	and	f-TTL	Algorithms
• Size	rate	target	= 50%	of	d-TTL	:		Size	rate	achieved		=	49%	of	d-TTL

Fig	3:	Hit	rate	vs	Average	Cache	Size	curve

Thank	You

